Instruction for exercise 4

Title: Testing the state of light polarization. Malus' law.

Theoretical topics

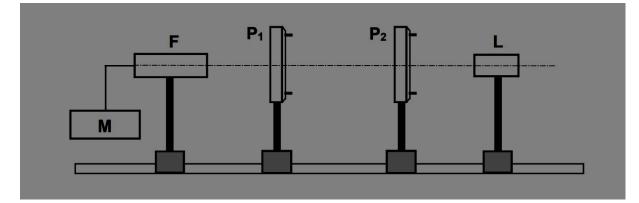
- 1. Spectrum of electromagnetic waves.
- 2. Interference, diffraction and ways of light polarization. Optically active fluids.
- 3. Laser light properties.

Topics for a test

- 1. Explain what the polarization of light is.
- 2. What is the impact of laser light on a tissue?

The purpose of the exercise: Study the phenomenon of polarization of light, characteristics of laser radiation, checking the law of Malus, learning safe working conditions with laser beam.

Safety remarks:


Note that working with laser light can be dangerous to your eyesight. Avoid direct or reflected laser beam effects on the eyes

Instruments:

Optical bench, polarizers, laser - light source.

Technical Introduction:

1. Set the measurement kit according to the scheme given below:

where: P1,P2 - polaroids (polarizer and analyzer), F- photometer, M- multimeter, L-laser head

- 2. Measure the transmittance (transmission) of the polarizer and analyzer depending on the angle of the polarization plane, using a laser such as He-Ne
- 3. Set the direction of the polarizer and analyzer transmission so that the value of the meter M is the maximum
- 4. Perform measurement of current value dependence on the angle of rotation of the analyzer relative to the polarizer.

Rotate the analyzer holder and record results every 10° (in the range of $0^{\circ} - 90^{\circ}$). Perform 3 series of measurements for each position of the analyzer.

Measurements and reporting:

- 1. Make a plot of the function $I_{avg}=f(\cos^2\alpha)$.
- 2. Read from the plot $I_{avg}=f(\cos^2\alpha)$ the values I_0° and I_{90}° and substitute for formula:

$$I_{\alpha} = I_{90^0} + (I_{0^o} - I_{90^o})\cos^2\alpha$$

From the above formula, for the values I_0° and I_{90}° calculate theoretical values I_{α} and put them into $I_{avg}=f(\cos^2\alpha)$ graph as reference curve.

3. Make a plot of the function $f(\alpha) = \frac{I-Imin.}{Imax-Imin}$.

Place the results in the table presented below:

0 °		
10°		
10°		
20 °		
30 °		
40 °		
50 °		
60°		
70 °		
80°		
90°		